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Exact interface model for wetting in the planar Ising model
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~Received 26 April 1999!

At the wetting transition in the two-dimensional Ising model the long contour~interface! gets depinned from
the substrate. It is found that on sufficientlylarge length scales the statistics of the long contour are described
by a uniqueprobability measure corresponding to a continuous ‘‘interface model’’ with an interface binding
‘‘potential’’ given by a Diracd function supported on the substrate. A lattice solid-on-solid model is shown to
give similar results.@S1063-651X~99!51010-6#

PACS number~s!: 05.50.1q, 68.45.Gd, 75.10.Hk
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In this Rapid Communication we address the theory
wetting in systems with short-ranged forces as exempli
by the Ising model. A mean-field description of wetting w
first obtained from Landau theory by Cahn@1# and developed
further by Nakanishi and Fisher@2#. Abraham@3# studied
critical wetting in a two-dimensional Ising model using exa
methods and found behavior at temperatures close to
wetting temperature,Tw , different from that predicted by
mean field theory. The situation in three dimensions is
less clear since fluctuation effects are still believed to
important. Progress was thought possible by coarse-grai
to sufficiently large length scales, such as thebulk correla-
tion length,jb , so that bulklike fluctuations can be ignore
and one need consider only the interfacial degrees of f
dom of the wetting layer. Thus, for ad-dimensional system
the resultinginterface modelis then expressed in terms o
the substrate-interface separation,y(x)>0, above a pointx
in the substrateS,Rd21 for which one assigns the following
effective Hamiltonian,Heff@y# @4#,

Heff@y#5E
S
dxF1

2
t̃u“yu21V~y!G , ~1!

wheret̃ is the interfacial stiffness. The interfacial potentia
V(y), was originally given the form@4,5#

V~y!5v1~T!e2y/jb1v2e22y/jb, ~2!

wherev2 is taken to be positive and independent of tempe
ture T andv1(T)}T2Tw

mean-field. A more recent and carefu
derivation ofV(y), starting from a bulk Landau-Ginzburg
Wilson Hamiltonian, has been carried out@6# which leads to
Eq. ~2! together with corrections~see also@7#!. The partition
function,ZS , is then written in terms of the functional inte
gral

ZS5)
xPS

E
0

`

dy~x!e2Heff[ y] , ~3!

although this is only a formal expression whose prec
mathematical meaning is unclear at this stage and imp
within it is some lower-length cutoff.

A more rigorous approach to such interface models is
lacking so it seems timely to clarify the situation as it appl
to thed52 Ising model. In this case Eq.~3!, with Eq. ~1!, is
PRE 601063-651X/99/60~4!/3475~4!/$15.00
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analogous to the evolution kernel for Brownian motion~with
diffusion constant 1/2t̃! on the half liney>0 subject to a
potential V(y) with x being timelike. The main result re
ported here is thatexactanalysis of the planar Ising mode
and a lattice solid-on-solid~SOS! model implies thatV(y)
for these models is given byV(y)5cd0(y) whered0(•) is
the Diracd distribution supported on$0% and c can be ex-
pressed in terms of the temperature and various microsc
parameters. This result applies only to length scales su
ciently larger than the bulk correlation length,jb , but on
these scales Eq.~2! converges in some sense to ad function
@8#. Otherwise, Eqs.~1! and~3! still formally hold and for the
Ising model,t̃ is the surface stiffness@9# which takes into
account lattice anisotropy. At the critical wetting transitio
c50 with c.0 ~respectively,c,0! for T.Tw ~respec-
tively, T,Tw!. Before presenting the main result in a mo
precise way, we first describe the two microscopic latt
models considered.

Planar Ising Model. Ising spins,sm,n561 ~1<m<M ,
1<n<N!, are placed on the sites of a two-dimension
square lattice wrapped onto a cylinder of heightN and cir-
cumferenceM . The Ising spins interact across neare
neighbor sites with couplingsK1 ~respectively,K2! in the
~0,1! @respectively~1,0!# direction (K j5Jj /kBT). Following
@3#, two types of boundary conditions are imposed along
bottom edge of cylinder by adding an extra row of spi
along$(m,0)%m51

M coupled to the row$(m,1)%m51
M by vertical

bonds of strengthh1 . In caseA one fixessm,0511 for all
1<m<M ; in case B, sm,0521 for 1<m<x and sm,0
511 otherwise. The couplingh1 acts as a surface field o
the row$(m,1)%1

M . The top edge of the cylinder is left free
In contrast toA, boundary conditionB induces along con-

tour ~i.e., the interface! joining ( 1
2 , 1

2 ) to (x1 1
2 , 1

2 ) on the
dual lattice. In caseB, Abraham@3# showed that after taking
the limits M→`, N→` followed by x→` a wetting tran-
sition occurs. Ifw is defined by

wªe2K2~cosh 2K12cosh 2h1!/sinh 2K1 , ~4!

then the interface stays pinned to the substrate~i.e., the bot-
tom edge! whenw.1 and depinned whenw,1 with a criti-
cal wetting transition occurring atw51. This shows up as a
singularity in theincremental free energyfor the interface
defined as
R3475 © 1999 The American Physical Society



ry

e-

a

d

io

r-

ili

n

o

n-

-
er

-

ss

st,
n

-

t-

a
at

RAPID COMMUNICATIONS

R3476 PRE 60P. J. UPTON
t3
ª2 lim

x→`

lim
N→`

lim
M→`

1

x
ln@ZB/ZA#, ~5!

where Zb is the canonical partition function for bounda
conditionb5A,B.

SOS Model. We consider the model for an interface d
fined on alattice as introduced by Abraham and Smith@10#.
The interface is represented by the Markov random fieldY
5(Yj ) j 50

x , whereYjP@0,̀ ) is the height of the interface
above the lattice pointj . The Gibbs measure,Qx(•), is then
given by

Qx~YPdy!5
1

Zx
expS 2k(

j 51

x

uyj2yj 21u D
3F )

j 51

x21

~11ad0!~dyj !G
3d0~dy0!d0~dyx!, ~6!

whereZx is the canonical partition function defined so th
Qx(•) normalizes to 1. It was found that, in the limitx
→`, this model has a wetting transition ata51/k with the
interface being pinned~respectively, depinned! to the sub-
strate fora.1/k ~respectively,a,1/k! @10#.

In both cases, we seek the probability measure that
scribes the statistics of the interface on sufficientlylarge
length scales. First, consider the tied-down Brownian mot
@11# (Bs)sP[x1 ,x2] on R with Bx1

5y1 , Bx2
5y2 ~which has

diffusion constant 1/2t̃!. Then the tied-downreflected
Brownian motion is formed by (uBsu)sP[x1 ,x2] for which we

assign a conditional measurem (x1 ,y1)
(x2 ,y2) with the normalization

*dm (x1 ,y1)
(x2 ,y2)

5g21g1 with g65g(x22x1 ;y26y1) where

g(x;y) is the Gauss kernelg(x;y)5( t̃/2px)1/2e2 t̃y2/2x.
Now let (YsP@0,̀ ))sP[0,x] represent the height of the inte
face above the substrate on asufficiently largelength scale.
We show that for both the Ising and SOS case, its probab
measure, Px

c , on the infinite-dimensional spaceVx

5@0,̀ )[0,x] , is given by

Px
c~• !5

1

Zx~c!
e22cLxm (0,0)

(x,0)~• !, ~7!

where the partition function,Zx(c), is

Zx~c!5E dm (0,0)
(x,0)e22cLx ~8!

and the random variableLx is the Brownian ‘‘local time’’
@11# defined by

Lxª lim
e↓0

1

4e
meas$0<s<x:Ys<e% ~9!

with meas$•% denoting the Lebesgue measure. Note thatPx
c50

is the probability measure for the tied-down reflected Brow
ian motion. The random variableLx is a measure of the
amount of substrate which stays close to the interface. F
mally, it can be expressed as 2Lx5*0

xd0(Ys)ds in which
t

e-

n

ty

-

r-

case Eqs.~7! and~8! can be regarded as describing a Brow
ian particle~or Schrödinger particle of masst̃! on the half
line y>0 subject to the ‘‘potential’’cd0(y). For the Ising
model c5(12w)/2t̃, where the interfacial stiffness@9# is
t̃5sinh 2K1* sinh 2K2 sinht with t being interfacial tension

of a free interface given byt52(K12K2* ) and e22K j*

5tanhKj . For the SOS modelc5(1/k)2a and t̃5k2/2.
The incremental free energy~5! is now given by

t3~c!2t52 lim
x→`

1

x
ln Zx~c!. ~10!

We stress that the process (Ys)sP[0,x] determines the proper
ties of the Ising interface on length scales sufficiently larg
than the bulk correlation lengthjb51/2t. For T,Tw , the
wetting-layer thickness,l , given by the expectation
limx→`EYx/25l , should also be sufficiently larger thanjb .
Therefore, forT,Tw , this description is strictly only appro
priate for T sufficiently close toTw ~i.e., w21 sufficiently
small when positive and similarly fora21/k in the SOS
model!. ForT.Tw , the only restriction onT is that it be less
than the bulk critical temperature. Thus, the proce
(Ys)sP[0,x] , with measurePx

c , determines theasymptotic
properties of wetting in thescaling regime.

We now outline how we arrived at these results. Fir
consider the family of finite-dimensional distributions o
@0,̀ )n for all n>1

Px
c~VxuYx1

PA1 ,...,Yxn
PAn!

5E
A1

dy1 ...E
An

dyn px,n~x1 ,y1 ;...;xn ,yn!,

~11!

where 0,x1,¯,xn,x, Aj,@0,̀ ) for j 51,...,n and
px,n(•) is the joint probability density function which, ac
cording to Eqs.~7! and ~8!, is given by

px,n~x1 ,y1 ;...;xn ,yn!5
K~x1 ;0,y1!K~x2xn ;yn,0!

K~x;0,0!

3)
j 52

n

K~xj2xj 21 ;yj 21 ,yj !,

~12!

with K(•) defined by

K~u;y0 ,y!ªE dm (0,y0)
(u,y) e22cLu. ~13!

It will prove useful to expressK(•) more explicitly by use of
a Feynman-Kac formula. This is done by applying Dirichle
form techniques@12# from which it follows thatK(u;y0 ,y)

is the kernel of the evolution operatore2uĤc on the half line
with generatorĤc5Ĥ01cd0 where Ĥ0 is the Neumann-
boundary-condition operatorĤ0c52c9(y)/2t̃ for y.0
with c8(0)50. The termcd0 in Ĥc can be treated as
rank-1 perturbation onĤ0 and, hence, it can be shown th
Ĥc is equivalent to2(2t̃)21d2/dy2 on (0,̀ ) with the
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c-dependent boundary conditionc8(0)52t̃cc(0) @13#.
From this,K(•) can be expressed in spectral form@14#

K~u;y0 ,y!5Q~2c!4t̃ucue2t̃c2ue22t̃ucu(y01y)

1E
2`

` dv

2p
e2v2u/2t̃Feiv(y02y)

2S 2t̃c1 iv

2t̃c2 iv Deiv(y01y)G , ~14!

whereQ~•! is the Heaviside step function.
To evaluatepx,n(•) for the planar Ising model we start b

considering joint probabilities of lattice-contour events. L
Em,nªsm,nsm11,n be the ~horizontal! bond energy. Then
I m,nª(12Em,n)/2 is the indicator for a Peierls contour ve
tically crossing the bond joining (m,n) to (m11,n). If j
denotes the lattice site (xj ,yj ), Xª$1,...,n%, E X

ªP j PXEj
and I X

ªP j PXI j , then thejoint probability of Peierls con-
tours vertically crossing bonds at$(xj1

1
2 ,yj )% j PX , with

boundary conditionb, is given by the canonical expectatio
^I X&b ~where, throughout, the limitsN,M→` have already
been taken!. In the presence of a long contour, the probab
ity ^I X&B can be shown to be given by

^I X&B5 (
X8#X

~21/2! uX8u^E X8&B
con^I X\X8&A , ~15!

where uX8u is the cardinality of the setX8 and the sum in-
cludes the empty set,B, with the conventionI B5E B51.
Also, ^E X8&B

con is theconnecteduX8u-point bond-energy cor-

relation function truncated so that^E X8&B
con→0 whenever

max$uxju,uxj2xu%jPX8→`. Unlike ^I X&B , the joint probability
^I X&A is translationally invariant in thex direction, i.e., in-
variant under$xj%; j PX°$xj1u%; j PX , and can be written

^I X&A5 (
ÃPP

)
PPÃ

^I P&A
T , ~16!

whereP is the set of allpartitionsof X, Ã5$P1 ,...,PuÃu% is
an element ofP, P is an element ofÃ of P, and ^I P&A

T

denotes thetruncated function which can be expressed
terms of the truncateduPu-point bond-energy correlation
function as^I P&A

T 5(21/2)uPu^E P&A
T . The joint probability

^I X&B contains contributions coming from thelong contour
passing throughall, someor noneof the points inX with
closed cycles,disconnectedfrom the long contour, passin
through the remaining points. If the points inX are suffi-
ciently well separatedthen the terms in Eq.~15! can be
understood as follows: (21/2)uX8u^E X8&B

con is the probability
~up to an unimportant prefactor! of the long contour passing
through all the points inX8#X whereas^I X\X8&A is the
probability of contoursdisconnectedfrom the long contour
passing through the points inX\X8. This identification is
clear from the truncation properties of^E X8&B

con and the trans-

lational invariance of̂ I X\X8&A ~which is dominated by smal
bulklike bubbles passing through the points inX\X8!. Fur-
thermore,̂ I P&A

T in Eq. ~16! is dominated by the probability
t

-

of a singleclosed contour passing throughall the points inP
from which one can extract a large-deviations rate functio
of Wulff type.

The truncatedn-point bond-energy correlation functions
^E X&A

T and ^E X&B
con, can be evaluated using transfer-matr

methods, results for which have already been presente
terms of Pfaffians of dimension 2n and 2n12 for cases
A and B, respectively @15#. Here we re-express thes
Pfaffians more transparently as follows. LetG
5$( i 1 ,i 2),(i 2 ,i 3),...,(i n21 ,i n)% be the path defined in term
of the sequence of line elements where$ i 1 ,...,i n% is some
permutationof X. A closed circuit,Gc , can be formed by
Gc5$G,(i n ,i 1)%. For each line element (j ,k) ~i.e., pair of
points inX! we assign a matrix

Gjk5S 2Gjk
21 Gjk

22

2Gjk
11 Gjk

12D ~17!

if yk>yj andGjk is as in Eq.~17! for yk,yj except that the
superscripts11 and22 are interchanged for both the off
diagonal elements. The matrix elements are given by

Gjk
pq5

q

2p E
2p

p

dv ei (xk2xj )vei (p2q)d* (v)/2Fe2uyk2yj ug(v)

2 ip
A2~v!

A1~v!
e2(yj 1yk)g(v)G ~18!

~for p,qP$1,2%!, where

A6~v!5
e2K2sinh 2K1

sinh 2h1
@e6g(v)2w#H cos@d* ~v!/2#

sin@d* ~v!/2#
~19!

and g~v! and d* (v) are the Onsager functions defined
terms of a length and angle, respectively, of a hyperbo
triangle and can be found in, e.g., Ref.@15#. Thus, if GG

ªGi 1i 2
Gi 2i 3

¯Gi n21i n
and GGc

ªGGGi ni 1
, then the required

bond-energy correlation functions can be expressed as

^E X&A
T 5

21

2 (
Gc

Tr GGc, ~20!

^E X&B
con5(

G
Ui 1

t GGVi n
/G~x!, ~21!

where the sums are over all distinct circuits and paths,G(x)
is given by

G~x!5
1

2p i E2p

p

dv
B~v!eixv

A1~v!
, ~22!

where

B~v!5
eK2 sinh 2K1

sinh 2h1
@eg(v)2e24K2w#sin@d* ~v!/2#

~23!

and the initial and final vectors in Eq.~21! are given by
Ui 1

t 5@Gi 1
1(0),2Gi 1

2(0)#, Vi n
t 5@Gi n

2(x),Gi n
1(x)#, with
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Gj
6~u!5

61

2p E
2p

p

dv
e6 id* (v)/2

A1~v!
ei (u2xj )ve2yjg(v).

~24!

We seek the form of̂E X&B
con for sufficiently largex and

xk2xj . Details of the asymptotic analysis will be present
elsewhere; here we emphasize two aspects of it:~a! ^E X&B

con

is dominatedby the directedpath, i.e.,G corresponding to
0,xi 1

,xi 2
,¯,xi n

,x, with all the other paths, containin

overhangs, being subdominant by a factor ofO(e2Dx/jb)
whereDx is the total excess length of the overhangs in thx
direction; ~b! standard asymptotic analysis of the integr
~18!, ~22!, and ~24!, reveal that forxk2xj@jb , yj5o(xk
2xj ) and w21 close to zero when positive,Gjk is domi-
natedonly by its top-left element,2Gjk

21 , andUi 1
andVi n

are dominated by their top elements,Gi 1
1(0) andGi n

2(x) re-

spectively, with Gjk
21;K(xk2xj ;yj ,yk), Gi 1

1(0)

;K(xi 1
;0,yi 1

), Gi n
2(x);2K(x2xi n

;yi n
,0) and G(x)

;K(x;0,0) ~ignoring constant prefactors which depend on
on the lattice parametersK1 , K2 and h1! where K(•) is
given by Eq.~14!. Hence, from Eq.~21!, this implies that
(21/2)uXu^E X&B

con asymptotically tends to Eq.~12!.
The calculation for the SOS model is simpler.

$x1 ,...,xn%,$1, . . . ,x21%, then the family of finite-
dimensional distributions given byQx(@0,̀ )11xuYx1

PA1 ,...,Yxn
PAn) can be exactly evaluated using the

transfer-integral methods of Ref.@10#. One then applies stan
dard asymptotic methods to the resulting expression for la
x with xj 112xj@1, keepinga21/k small when positive,
leading to the joint probability density function given by E
~12!, whereK(•) is given by Eq.~14!.
.

.

ev
e

Thus, for both the Ising and the SOS model we ha
established the consistent family of finite-dimensional dis
butions$px,n(•)%n>1 . By theKolmogorov extension theorem
@11# this implies that the measurePx

c , given by Eq. ~7!,
uniquelydetermines the statistics of the interface on a su
ciently large scale. We now make two remarks.

~i! For c,0, the wetting layer thickness is given byl

51/4t̃ucu and therefore 2cLx in ~7! can be rewritten as
2Lx/2t̃l . From this it follows that the measurePx

c is mani-
festly invariant under the scale transformationl °bl ,
x°b2x andYs°bYb2s .

~ii ! The expectationlª limx→`ELx /x provides a measure
of the average proportion of the substrate staying close to
interface in the thermodynamic limit. It follows from Eqs
~8! and ~10! that 2l5]t3/]c from which we have thatl
52t̃ucu for c,0 andl50 for c.0. Hence, we can see tha
no matter how close one is to the wetting transition forT
,Tw , some proportion of the interface~which gets vanish-
ingly small asT↑Tw! will stay close to the substrate and th
recurrent property of the interface@16# is not evident from
looking at the wetting layer thickness~where l →` as
T↑Tw! alone.

To conclude, we have usedexactmethods to show tha
wetting in the two-dimensional Ising model isuniquelyde-
scribed on sufficiently large length scales by an interfa
model.All aspects of critical wetting in theasymptotic scal-
ing regimeare contained within this interface model.
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