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Exact interface model for wetting in the planar Ising model
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At the wetting transition in the two-dimensional Ising model the long contoterface gets depinned from
the substrate. It is found that on sufficientéyge length scales the statistics of the long contour are described
by a uniqueprobability measure corresponding to a continuous “interface model” with an interface binding
“potential” given by a Diracé function supported on the substrate. A lattice solid-on-solid model is shown to
give similar results[S1063-651X99)51010-§

PACS numbegps): 05.50+q, 68.45.Gd, 75.10.Hk

In this Rapid Communication we address the theory ofanalogous to the evolution kernel for Brownian moti@rith
wetting in systems with short-ranged forces as exemplifiedliffusion constant 172) on the half liney=0 subject to a
by the Ising model. A mean-field description of wetting waspotential V(y) with x being timelike. The main result re-
first obtained from Landau theory by Caft] and developed ported here is thagxactanalysis of the planar Ising model
further by Nakanishi and Fishd2]. Abraham[3] studied and a lattice solid-on-solidSOS model implies that/(y)
critical wetting in a two-dimensional Ising model using exactfor these models is given by(y)=cdy(y) where dy(-) is
methods and found behavior at temperatures close to thgée Dirac § distribution supported of0} andc can be ex-
wetting temperatureT,,, different from that predicted by pressed in terms of the temperature and various microscopic
mean field theory. The situation in three dimensions is faparameters. This result applies only to length scales suffi-
less clear since fluctuation effects are still believed to beiently larger than the bulk correlation length,, but on
important. Progress was thought possible by coarse-grainingese scales E@2) converges in some sense ta&unction
to sufficiently large length scales, such as thek correla-  [8]. Otherwise, Eqs(1) and(3) still formally hold and for the
tion length,&,, so that bulklike fluctuations can be ignored Ising model, 7 is the surface stiffnes9] which takes into
and one need consider only the interfacial degrees of freeaccount lattice anisotropy. At the critical wetting transition
dom of the wetting layer. Thus, ford dimensional system, c¢=0 with ¢>0 (respectively,c<0) for T>T,, (respec-
the resultinginterface models then expressed in terms of tively, T<T,). Before presenting the main result in a more
the substrate-interface separatigx) =0, above a poink  precise way, we first describe the two microscopic lattice
in the substrat&C R9~* for which one assigns the following models considered.
effective HamiltonianHy] [4], Planar Ising Model Ising spins,op, ,=*1 (1=sm=M,

1=n=<N), are placed on the sites of a two-dimensional
(1) square lattice wrapped onto a cylinder of heighand cir-

cumferenceM. The Ising spins interact across nearest-

neighbor sites with couplingK; (respectively,K,) in the
where7 is the interfacial stiffness. The interfacial potential, (0,1) [respectively(1,0)] direction (K;=J;/kgT). Following

1
Halyl= | a4 VY V)

V(y), was originally given the forni4,5] [3], two types of boundary conditions are imposed along the
y oy bottom edge of cylinder by adding an extra row of spins
V(y)=vi(T)e Vo+ve™ Ve, (2 along{(m,0)}_, coupled to the roWi(m,1)}M_, by vertical

bonds of strengti; . In caseA one fixesop, o= +1 for all
1<m=<M; in caseB, ono=—1 for 1I=sm=<x and o, g
=+1 otherwise. The coupling, acts as a surface field on
the row{(m,1)}}'. The top edge of the cylinder is left free.

wherev, is taken to be positive and independent of tempera
ture T andv(T)ocT—TTeafeld A more recent and careful
derivation ofV(y), starting from a bulk Landau-Ginzburg-
Wilson Hamiltonian, has been carried ¢6{ which leads to - :

i~ ) ™" In contrast toA, boundary conditior3 induces adong con-
Eq. (2) together with correction&see alsq7]). The partition oA y 9

; ; i 11 11
function, Zs, is then written in terms of the functional inte- ©ur (i-e., the interfacejoining (,7) to (x+3,7) on the
gral dual lattice. In cas#s, Abraham[3] showed that after taking

the limits M —o, N—o followed by x— a wetting tran-
o sition occurs. Ifw is defined by

ze=11 f dy(x)e” "etlV], &)
xes e w:=e?K2(cosh K ; —cosh h;)/sinh K, (4
although this is only a formal expression whose precise
mathematical meaning is unclear at this stage and implicithen the interface stays pinned to the substfite, the bot-
within it is some lower-length cutoff. tom edg¢ whenw>1 and depinned whew<1 with a criti-

A more rigorous approach to such interface models is stilcal wetting transition occurring at=1. This shows up as a
lacking so it seems timely to clarify the situation as it appliessingularity in theincremental free energfor the interface
to thed=2 Ising model. In this case E3), with Eq.(1), is  defined as
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where Z° is the canonical partition function for boundary
conditionb= A4, 5.

SOS ModelWe consider the model for an interface de-

fined on alattice as introduced by Abraham and Smjtt0].
The interface is represented by the Markov random fiéld
=(Yj){—o, whereY;e[0:°) is the height of the interface
above the lattice point. The Gibbs measur&),(-), is then
given by

1 X
QuYedy)=—exg —«>, |yj=yj_1l
ZX =1

x—1
X j1:[1 (1+a50)(dyj)}

X 6o(dYo) So(dyy), (6)

P.J. UPTON

PRE 60

case Eqs(7) and(8) can be regarded as describing a Brown-
ian particle(or Schralinger particle of mas%) on the half
line y=0 subject to the “potential’cy(y). For the Ising
model c=(1—w)/Z7, where the interfacial stiffned®] is
7=sinh X7 sinh X, sinh7r with 7 being interfacial tension
of a free interface given byr=2(K;—K%) and e 2¢
=tanhK;. For the SOS modet=(1/k)—a and 7= /2.
The incremental free enerd$) is now given by

(C)— 7= — Iim;lln Z,(c).

X—s 00

(10

We stress that the procesgds. (o determines the proper-
ties of the Ising interface on length scales sufficiently larger
than the bulk correlation length,=1/27. For T<T,,, the
wetting-layer thickness,/, given by the expectation
lim,_..EY,»=/, should also be sufficiently larger th&p.
Therefore, forT<T,,, this description is strictly only appro-
priate for T sufficiently close toT,, (i.e., w—1 sufficiently
small when positive and similarly foa—1/x in the SOS

whereZ, is the canonical partition function defined so thatmode). ForT>T,,, the only restriction o is that it be less

Q«(+) normalizes to 1. It was found that, in the linxt
— o0, this model has a wetting transition at 1/« with the
interface being pinnedrespectively, depinngdo the sub-
strate fora>1/k (respectivelya<1/x) [10].

than the bulk critical temperature. Thus, the process
(Yo)seqox» With measureP$, determines theasymptotic
properties of wetting in thecalingregime.

We now outline how we arrived at these results. First,

In both cases, we seek the probability measure that desonsider the family of finite-dimensional distributions on

scribes the statistics of the interface on sufficientyge

[0)" for all n=1

length scales. First, consider the tied-down Brownian motion

[11] (Bs)serx, x,; ON R with By =y, By, =y, (which has
diffusion constant 172). Then the tied-downreflected
Brownian motion is formed by|BS|)SE[X1,x2] for which we

2, yz)

assign a conditional measupé with the normalization

(X2.Y2) _
Jdu (X2 yz)
g(x:y) is the Gauss kemeb(x:y)=(#2mx)Y%e ™
Now let (Yse[0,°))sc(0x represent the height of the mter
face above the substrate orsafficiently largelength scale.

g-+g: with g.= (x2—x1;yz+y1) where

We show that for both the Ising and SOS case, its probability

measure, P;, on the infinite-dimensional spacel,
=[0,2)%4 is given by
Cl oy — Ly, (x,0)
PY)= 7y e g, Y
where the partition functionZ,(c), is
Z,(c)= f dufsole 2 ®
and the random variable, is the Brownian “local time”
[11] defined by
1
Ly:=lim-—meag0<s<x:Y <e¢} 9
51046

with meag-} denoting the Lebesgue measure. Note Bfat’
is the probability measure for the tied-down reflected Brown-
ian motion. The random variable, is a measure of the

PEOQ Yy € AL, Yy €A

fdyl---f dYn Pxn(X1,Y15--%nYn),
Al An

(11)

where 0<x;<---<Xx,<X, AjC[0c) for j=1,...n and
Pxn(-) is the joint probability density function which, ac-
cording to Eqs(7) and(8), is given by

K(Xl;oiyl)K(X_Xn 1yn10)
K(x;0,0)

px,n(xl WYireeXn,Yn) =

n

lejz K(Xj=X;-1:Yj-1,Y)),

(12
with K(-) defined by

K(U;yo,y):= J dufbyne 2. (13)

It will prove useful to expresk(-) more explicitly by use of

a Feynman-Kac formula. This is done by applying Dirichlet-
form techniqueg12] from which it follows thatK(u;yq,y)

is the kernel of the evolution operater " on the half line
with generatorH,=H,+cd, where H, is the Neumann-
boundary-condition operatoH = — /' (y)/2Z7 for y>0

with «'(0)=0. The termc&o in H, can be treated as a

amount of substrate which stays close to the interface. Fofank-1 perturbation oiily and, hence, it can be shown that

mally, it can be expressed ad 2= [350(Ys)ds in which

H. is equivalent to—(27) 'd%/dy? on (0Ow) with the
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c-dependent boundary conditiogs’ (0)=27c(0) [13]. of asingleclosed contour passing through the points inP

From this,K(-) can be expressed in spectral fofi] from which one can extract a large-deviations rate functional
of Wulff type.
K(u;yo,y)=@(—c)4~7|c|e2”7°2“e*2”7|°|(y0+Y) The truncatech-point bond-energy correlation functions,
(X, and (£X)F", can be evaluated using transfer-matrix

f0(yo—y) methods, results for which have already been presented in
terms of Pfaffians of dimensionni2and 2n+2 for cases
A and B, respectively[15]. Here we re-express these
Pfaffians more transparently as follows. Lef’
={(i1,i2),(i2,iz),..-,(n_1,in)} be the path defined in terms
of the sequence of line elements whére,...,i,} is some
Where@( ) is the Heaviside Step function. permutationOf X. A closed circuit FC! can be formed by

To evaluatep, ,(-) for the planar Ising model we start by I'e={I'.(in.i1)}. For each line element]j (k) (i.e., pair of
considering joint probabilities of lattice-contour events. Letpomts inX) we assign a matrix
Emni=0mnOm+1n D€ the (horizonta) bond energy. Then

+fw Ee w2ulZF e

00277

2rct+iw

| 2Fc—iw (14)

)eiw(yow) ,

_+ —_—
Imn=(1—E&nn)/2 is the indicator for a Peierls contour ver- G —Gj G 17
tically crossing the bond joiningng,n) to (m+ 1,n). If j ik J.+k+ J.*k*
denotes the lattice sitex(,y;), X:={1,...n}, EX: IT; . x€|

and 1% =11 xlj, then thejoint probablhty of Pelerls con- if y,=y; andGy is as in Eq(17) for y,<y; except that the
tours vertlcally crossing bonds d{(x;+ 2,yJ)}JEx, with  superscripts++ and —— are interchanged for both the off-
boundary conditiorb, is given by the canonlcal expectation diagonal elements. The matrix elements are given by
(1), (where, throughout, the limitsl,M — have already

been taken In the presence of a long contour, the probabil- pg_ 9 7 (X)) 0 i (= D) 5 (0)/2] V= Vil ¥(®)
ity (1) can be shown to be given by Gji'= e €410 e B
: : i A (@) eyt
(M= 2 (1PN, (19 TP AT, (18
X'cX

where|X'| is the cardinality of the seX’ and the sum in- (for p,qe{+,~}), where
cludes the empty sef, with the convention“=£9=1. ) e Kosinh XK, cog 5* (w)/2]
Also, (£X'Y"is the connected X'|-point bond-energy cor- A (w)= W[e—y W i 5* ()12]
relation function truncated so th&€*')®" -0 whenever (19

max{|x| X —X[}jexr—. Unlike (1X)5, the joint probability

(1% 4 is translatlonally invariant in the direction, i.e., in- and Hw) and 6*(w) are the Onsager functions defined in

variant underX;}y; . x—{X;+ U}yj.x, and can be written tgrms of a length and anglg, respectively, of a hyperbollc
tnangle and can be found in, e.g., R¢15]. Thus, if G

. . =G ,Gi,i;"*Gi i andG'e=G'G, ; , then the required
(I >A:m2€m PE[W () a (16) bond-energy correlation functions can be expressed as
-1
where is the set of alpartitionsof X, w={Py,...,P|y} is <gX>L=72 TrGle, (20)
r

an element of, P is an element ofw of ¢, and (I")
denotes thdruncated function which can be expressed in
terms of the truncatedP|-point bond-energy correlation X\ con_ r

function as(I”)T=(—1/2)P(&P)T,. The joint probability (€05 E UiLGVi, /6 (). @)
(1*) contains contributions coming from theng contour

passing througrall, someor noneof the points inX with ~ Where the sums are over all distinct circuits and paBix)
closed cyclesdisconnectedrom the long contour, passing IS given by

through the remaining points. If the points ¥ are suffi- o

ciently well separatedthen the terms in Eq(15) can be G(x)— f g DL B(w)e 22
understood as follows: 1/2)X'l(£X")%"is the probability AT (w)

(up to an unimportant prefactoof the long contour passing
through all the points inX’'CX Whereas(IX\X'M is the
probability of contourgdisconnectedrom the long contour
passing through the points K\ X'. This identification is B(w)=
clear from the truncation properties @*')$"and the trans-

lational invariance of1**X") , (which is dominated by small
bulklike bubbles passing through the pointsXnX’). Fur-  and the initial and final vectors in Eq21) are given by
thermore (17T, in Eq. (16) is dominated by the probability Ui, =[G (0),~G; (0)], Vi =[G (x),G; ()], with

where

ekz2sinh 2K ;

(0) _ o= 4K H
snhh, 1€ e awlsin 8* (w)/2]

(23
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+1 (= etid* ()2 Thus, for both the Ising and the SOS model we have
Gy (u)= Ef dwme'(“*"i)“’e*yﬂ(w). established the consistent family of finite-dimensional distri-

butions{py n(-)}n=1. By theKolmogorov extension theorem
[11] this implies that the measurg;, given by Eq.(7),

We seek the form of £X)5" for sufficiently largex and ~ uniquelydetermines the statistics of the interface on a suffi-
x—X; . Details of the asymptotic analysis will be presentedciently large scale. We now make two remarks.
elsewhere; here we emphasize two aspects ¢t &) 5" (i) For c<0, the wetting layer thickness is given by
is dominatedby the directed path, i.e.,I" corresponding to =1/47|c| and therefore 2L, in (7) can be rewritten as
0<x;, <x;,<---<X; <X, with all the other paths, containing — L,/Z7/ . From this it follows that the measuR is mani-
overhangs being subdominant by a factor @(e~2¥/é) festly invariant under the scale transformatiofi—b/,
whereAx is the total excess length of the overhangs inxhe X— b and Y¢—>b Y.
direction; (b) standard asymptotic analysis of the integrals (i) The expectation :=lim,_...EL,/x provides a measure
(18), (22), and (24), reveal that forx,—x;>§&,, yj=0(Xk of the average proportion of the substrate staying close to the
—x;) andw—1 close to zero when positiv&, is domi- interface in the thermodynamic limit. It follows from Egs.
natedonly by its top-left element-G, ", andU; andV;  (8) and(10) that 2z=g7"/c from which we have thak
are dominated by their top elemen&; (0) andG; (x) re- =27|c| for c<0 and\ =0 for c>0. Hence, we can see that

. . - 1 L no matter how close one is to the wetting transition Tor

spectively, — with Gy ~K(4x=X;:y.y0).  Gi(0) <T,, some proportion of the interfadgvhich gets vanish-
~K(xi,;;0yi),  Gi ()~—K(x=x;y;,0) and G(x) ingly small asT|T,) will stay close to the substrate and this
~K(x;0,0) (ignoring constant prefactors which depend only recurrentproperty of the interfacgl6] is not evident from
on the lattice parameter,, K, and h;) whereK(-) is  looking at the wetting layer thicknesgvhere /—c as
given by Eq.(14). Hence, from Eq(21), this implies that ~ TTTy,) alone.
(_1/2)\X\<5X>%0n asymptotically tends to Eq12). To conclude, we have useskactmethods to show that

The calculation for the SOS model is simpler. If Wetting in the two-dimensional Ising model imiquely de-
{X1,...X,}C{1,... x—1}, then the family of finite- scribed on sufficiently large length scales by an interface

dimensional distributions given by Q,([0)* XY model.All aspects of critical wetting in thasymptotic scal-
o "1 ing regimeare contained within this interface model.

(29)

€A1,....Yx €A,) can be exactly evaluated using the

transfer-integral methods of R¢fL0]. One then applies stan- | wish to thank D. B. Abraham, R. Evans, |. McGillivray,
dard asymptotic methods to the resulting expression for largand A. Maciotek very much for useful discussions, M. E.
x with x;,;—x;>1, keepinga— 1/« small when positive, Fisher for helpful correspondence, and acknowledge finan-
leading to the joint probability density function given by Eq. cial support from the EPSRQJ.K.) under Grant No. B/94/

(12), whereK(-) is given by Eq.(14). AF/1769.
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